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Abstract

Congestion pricing is a standard approach to mitigate traffic congestion in a number of urban networks

around the world. The advancement of satellite technology has spurred interest in distance-based con-

gestion pricing schemes, which obviate the need for fixed infrastructure such as gantries that are used in

area- and cordon-based pricing. Moreover, distance-based pricing has the potential to more effectively

manage traffic congestion. In the context of distance-based congestion pricing, we propose the use

of sparse subspace clustering methods employing Elastic Net optimization (SSCEL) and Orthogonal

Matching Pursuit (SSCOMP), as well as two hierarchical density-based clustering methods, (OPTICS,

HDBSCAN*) for the derivation of tolling zones. These tolling zone derivations are then used within

a simulation-based framework for real-time predictive distance-based toll optimization to examine net-

work congestion and performance of the tolling schemes. Within this framework, for a given derivation

of tolling zones, tolling function parameters are optimized in real-time using a simulation-based Dynamic

Traffic Assignment (DTA) model. Guidance information generation is integrated into the predictive

optimization framework and behavioral responses to the information and tolls along dimensions of de-

parture time, route, mode, and trip cancellation are explicitly modeled. For the evaluation of network

performance we make use of Travel Speed Index (TSI) data from the real-world Boston Central Business

District urban network and demonstrate that tolling zones derived from the sparse subspace cluster-
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ing are effective means of operationalizing real-time distance-based toll optimization schemes and can

positively impact overall network performance, showing improvements in average travel time and social

welfare relative to the baseline.
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1. Introduction1

Traffic congestion is a serious issue world-wide, which results in large costs to travelers, the envi-2

ronment and economy. Congestion was estimated to result in a total of 5.5 billion hours of time delay3

and 2.9 billion gallons of fuel expenditure in urban areas in the United States between 2000 and 20104

(Litman, 2019) and the costs of congestion were projected to increase from $121 billion in 2011 to $1995

billion in 2020. Mitigating congestion is always a high-priority and also impacts transportation network6

reliability, driver’s comfort and traffic safety. Congestion pricing is a standard approach for congestion7

mitigation that influences traveler behavior along several dimensions: trip making and frequency, mode,8

destination, time of day, route, and so on. Traditional approaches to congestion pricing include facility-9

based and area-based schemes (de Palma and Lindsey, 2011) that rely on physical infrastructure such10

as gantries or gates for vehicle detection. Unfortunately, the reliance on fixed physical infrastructure11

makes it difficult to modify or relocate the charging areas or zones. Moreover, these schemes can result12

in inefficiency in terms of congestion mitigation since they do not differentiate toll charges based on13

the associated externalities or congestion caused due to differing distances traveled or time spent in14

congestion. The aforementioned disadvantages of area- and facility-based pricing and the advancement15

of Global Navigation Satellite Systems (GNSS) have focused attention on usage-based tolling wherein16

toll charges depend on the distance-traveled or the time spent in congestion (see Smith et al. (1994)17

and Bonsall and Palmer (1997) for a detailed discussion on the comparative performance of distance-18

and time-based schemes). Singapore is in the process of transitioning to such a GNSS-based electronic19

road-pricing scheme (ERP2) (LTA, 2016, 2021). Distance-based schemes may be operationalized by20

dividing the urban area into zones and charging a distance-based toll such that the tariff varies across21

zones and by time-of-day. The motivation for the use of tolling zones (instead of a single distance-based22

scheme over the entire network) is that it provides the flexibility to adjust the tolling rates based on23

road-type and congestion levels, thereby improving overall efficiency gains.24

Past research on area and cordon-based real-time toll optimization has typically applied reactive25

approaches (where the optimization of tolls is not based on forecasts of future traffic conditions, but26

3



rather on prevailing traffic conditions) for small corridor networks and there are few studies that adopt27

a predictive approach in the context of large networks (Gupta et al., 2016, 2020). A more detailed28

discussion of cordon and area-based real-time toll optimization may be found in Gupta et al. (2020).29

As noted previously, in contrast with cordon- and area-based schemes, distance-based tolling schemes30

involve partitioning the network into zones, and levying a toll within each zone that is a function of31

distance traveled (linear toll functions are considered in Gu et al. (2018); Yang et al. (2012); Zhu and32

Ukkusuri (2015), and piece-wise linear functions are used in Liu et al. (2014); Meng et al. (2012); Sun33

et al. (2016)). Distance-based toll optimization problems have largely been formulated as simulation-34

based optimization problems (Gu and Saberi, 2019b; Gu et al., 2018; Lentzakis et al., 2020), non-linear35

programs (Yang et al., 2012) and mathematical programs with equilibrium constraints or MPEC (Liu36

et al., 2014; Meng et al., 2012), which are solved by global optimization approaches (Liu et al., 2014),37

meta heuristics (Lentzakis et al., 2020; Meng et al., 2012), reinforcement learning (Zhu and Ukkusuri,38

2015) and feedback controllers (Gu and Saberi, 2019b; Gu et al., 2018). With the exception of Lentzakis39

et al. (2020), these approaches are based on prevailing network conditions (i.e., they are reactive as40

opposed to proactive), and do not consider elastic demand or the integration of guidance information41

generation.42

Several studies have also examined the partitioning of networks utilizing flow, speed and density43

data (Ji and Geroliminis, 2012; Lentzakis et al., 2014; Saeedmanesh and Geroliminis, 2017) for the44

design of traffic management schemes utilizing the Network Fundamental Diagram (NFD) concept.45

Although area- and cordon-based pricing has been studied in great detail (Geroliminis and Levinson,46

2009; Simoni et al., 2015; Zheng et al., 2016, 2012), distance-based pricing in particular has only recently47

received attention on idealized networks (Daganzo and Lehe, 2015), using nested regions (Gu et al.,48

2018) and at the link-level (Simoni et al., 2019). With the exception of Lentzakis et al. (2020), there49

has been limited research on systematic approaches for the derivation of tolling zones within distance-50

based toll optimization strategies. Due to the increasing significance of distance-based road pricing in51

traffic network management and operations, this paper addresses the problem of how to define tolling52

zones and proposes the application of sparse subspace clustering methods to define parsimonious sets53
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of tolling zones. The performance of these methods is evaluated within a framework for real-time54

toll optimization which generates predictive optimized distance-based toll strategies combined with55

guidance information. This paper contributes to the existing literature in the following respects:56

1. We apply sparse subspace and hierarchical density-based clustering methods for the derivation of57

tolling zones that utilize location coordinates and travel speed indices (TSI) as features. The key58

advantage of using sparse subspace clustering techniques is that they enable the effective use of59

high-dimensional temporal network performance data (for example, travel speeds at a resolution of60

five minutes) directly in the clustering algorithm. This provides a potentially promising alternative61

to the procedure proposed in Lentzakis et al. (2020) where the clustering algorithm is applied to62

a single aggregate measure of network performance (over the entire peak period) for each link. In63

this paper, we focus specifically at the performance of the different clustering algorithms and the64

implications for toll design/policy.65

2. The proposed clustering methods are evaluated using a framework for real-time distance-based66

predictive toll optimization on the Boston CBD network and yield insights into their performance67

and suitability for deployment wherein one of our primary goals is minimization of computational68

effort.69

2. Framework for Predictive Distance-based Toll Optimization70

In this section, we summarize the real-time distance-based predictive toll optimization framework71

(more details may be found in Lentzakis et al. (2020)), the optimization problem formulation, the72

proposed clustering methods for tolling zone derivation and the algorithmic solution for the optimization73

problem.74

2.1. Framework75

The framework, shown in Figure 1, uses DynaMIT2.0 - a simulation-based Dynamic Traffic Assign-76

ment (DTA) system developed at the MIT Intelligent Transportation Systems Lab (Ben-Akiva et al.,77
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Figure 1: Real-time distance-based predictive toll optimization framework

2010; Lu et al., 2015b). DynaMIT2.0 employs a rolling horizon approach involving two key modules,78

state estimation and state prediction. The state estimation process uses a combination of historical data,79

real-time traffic surveillance data, and prevailing network control strategies (such as distance-based toll80

optimization) to estimate the current state of the network. It used detailed models of demand (pre-trip81

models of departure time, route and mode choice), supply (mesoscopic traffic simulator that com-82

bines speed-density relationships and a deterministic queuing model) and their interactions. Following83

this, the state prediction module generates forecasts of traffic conditions for a pre-specified prediction84

horizon (origin-destination demands and supply parameters are forecasted for the future using an au-85

toregressive process). The strategy optimization and guidance generation modules in conjunction use86

the state predictions to first, optimize control strategies for the prediction horizon and second, generate87

guidance information (traveler information) for the prediction horizon. The evaluation of candidate88

control strategies makes use of network predictions and guidance information that are consistent, i.e.,89
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the guidance information is as close as possible to actual predicted network travel times (see Figure 190

and Ben-Akiva et al. (2010) for more on this aspect of consistency).91

3. Problem Formulation and Solution92

In this section, we describe the optimization problem formulation (based on the framework described93

in Section 2) including details of the demand model within the DTA system, and the solution approach.94

3.1. Context and Tolling Function Definition95

We represent the transportation network of interest as a directed graph G = (N ,A), where N96

denotes the set of n network nodes and A denotes the set of m links. The network is partitioned into97

l = 1 . . . L tolling zones, where every zone l is defined by a subset of network links Al ⊆ A. For each98

zone l, we define a tolling function ϕl(θ
t
l , Dl) that maps distance traveled within the zone l,Dl to the99

toll amount; θt
l is a vector of parameters that defines the tolling function in time interval t. Further, it100

is assumed that the toll payable in a zone is bounded, i.e τLB ≤ ϕl(θ
t
l , Dl) ≤ τUB, ∀l = 1, 2..., L ∀t =101

1, 2, ..., T .102

Denote the length of the state estimation interval in DynaMIT2.0 by ∆ (usually 5 minutes) and103

assume that the prediction horizon is composed of H such intervals so that the size of the prediction104

horizon is H∆. We assume that the prediction horizon and the optimization horizon are identical.105

Further, the tolling function parameters do not vary within a given time interval of size ∆ and these106

tolling intervals coincide with DynaMIT2.0 estimation intervals. For an arbitrary estimation interval107

[t0 − ∆, t0], let θh = (θh
1 ,θ

h
2 ...θ

h
L) represent the vector of tolling function parameters for the time108

period [t0 + (h − 1)∆, t0 + h∆] where h = 1, ...,H. Accordingly, for the current optimization horizon,109

the decision variables are θ = (θ1,θ2, ...,θH).110

Implementing a system with complex zone-based tariffs that vary every five minutes is likely to111

impose unreasonable burdens on drivers that may compromise acceptability of the system. An added112

issue is that drivers may not have a viable alternative if for example they suddenly find themselves113

entering a zone where the tariff has increased substantially. Hence, we assume that drivers are charged114
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the predicted toll that the system provides to them at the point of departure (more precisely, the point115

at which they make their decision, which may be up to 15 minutes prior to their actual departure).116

The underlying premise – justifiable given our rolling horizon design – is that the predictions of the117

toll in the future do not deviate appreciably from the actual implemented tolls. The rolling horizon118

framework is demonstrated in Figure 2119

Estimation Prediction Horizon

Optimization Horizon

Running Time

Now = 

Strategy Implementation

Cycle 1

Cycle 2

t 0

Figure 2: Rolling Horizon Approach for Tolling Function Optimization

Consider the set of vehicles v = 1, ..., V that are on the network during the prediction horizon120

[t0, t0 + H∆]. For each vehicle v, we denote the experienced trip travel on its chosen route by ttv121

and the predictive guidance information by ttg = (ttgi ; ∀i ∈ A), where ttgi represents a vector of time122

dependent travel times for link i . Note that the vehicle travel times tt = (ttv; v = 1, ..., V ) are obtained123

from the state prediction module of DynaMIT2.0, which we characterize through a single constraint124

that represents the coupled demand and supply simulators as:125

126

G(xp, γp, ttg,θ) = tt (1)

127

Where xp, γp represent the forecasted demand and supply parameters for the prediction horizon, and128
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θ is the vector of tolling function parameters. As noted previously, the state prediction module ensures129

consistency between ttg and tt.130

3.2. Pre-trip Behavioral Model with Elastic Demand131

The pre-trip response of users to the travel time guidance and distance-based tolls is modeled using132

a path-size nested logit model with heterogeneous value of time (illustrated in Figure 3) that captures133

decisions of mode choice, trip cancellation, departure time and path (notation is provided in Table134

1). We provide a brief description of the model here, for completeness (more details may be found in135

Lentzakis et al. (2020)).136

In response to pre-trip information and tolls, a traveler may alter his/her habitual travel pattern,137

which may include changing mode, canceling trip, changing departure time or path, or changing depar-138

ture time and path. This results in elastic total demand w.r.t. traffic congestion. The options of mode139

modeled are private car (drive alone) and public transit. The utility of change to transit for vehicle v140

is given by:141
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Table 1: Pre-trip Model - Abbreviations

Abbreviation Variable

βCM Alternative Specific Constant (ASC) for change of mode to transit

βCT ASC for canceling trip

βCDTd
ASC for departure in time interval d

cvm monetary cost for traveling with non-private (transit) mode

cvdp toll charge for departure via path p in interval d

cvp toll for switching to path p

tvm travel time associated with non-private (transit) mode

tgdp travel time (guidance) for departure via path p in interval d

tgp travel time (guidance) for switching to path p

athabd′p′ arrival time (habitual)

atgdp arrival time (predicted) for departure via path p in time interval d

βv
c monetary cost coefficient

βv
t travel time coefficient

βE schedule delay early coefficient

βL schedule delay late coefficient

PSp path size variable

C∗ utility relating to number of left turns/signalized intersections and path

length

ε∗ error component
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142

Uv(CM) = βCM + βv
c c

v
m + βv

t t
v
m + εm (2)

143

The utility of departing at time interval d and choosing path p for vehicle v is given by:144

Uv
dp = βCDTdp

+ βv
c c

v
dp + βv

t t
g
dp

+ βE max(athabd′p′ − atgdp, 0) + βLmax(atgdp − athabd′p′ , 0)

+ log(PSp) + Cdp + εdp

where :

cvdp =
L∑
l=1

ϕl(θ
tv,l
l , Dv

l ),

(3)

145

and tv,l, D
v
l denote the predicted time of entry of vehicle v into zone l and the total distance traveled146

by vehicle v in zone l, respectively. Note that if there are a total of N combinations of path and depar-147

ture time choices in the choice set, the alternative specific constant βCDTd
can only appear in (N − 1)148

utilities. The utility of canceling trip altogether is given by:149

150

Uv(CT ) = βCT + εCT (4)

151

Thus, the probability of vehicle v choosing alternative c within the choice set C is given by:152

153

P v(c|C) =
eµV

v
c∑

a∈C eµV v
a

(5)

154

where V v
c is the systematic utility given by V v

c = Uv
c − εc and µ is a scale parameter . The en-route155

choice model defines response of users in terms of path-choice to the toll and predictive travel time156

guidance. It is also formulated as a multinomial path size logit model where the utility of switching to157
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path p is given by:158

159

∪v
p = βv

c (tc
v
p) + βv

t (tt
g
p) + log(PSp) + Cp + εp

where :

tcvp =
L∑
l=1

ϕl(θ
tv,l
l , Dv

l )

(6)

160

Note that owing to the design of the distance-based tolls, which require that users are charged upfront161

at the beginning of a trip, we assume that en-route changes to the path are not made.162

3.3. Optimization Formulation163

The objective function for the toll optimization problem, formulated from the standpoint of the164

traffic regulator, is total social welfare (SW), which is the sum of the consumer surplus and the pro-165

ducer surplus. In this context, the consumer surplus (CS) is defined as the sum of the experienced166

utilities across all travelers, derived at the end of each simulation run, and the producer surplus is167

the net revenue, denoted by TP, which is simply the toll revenue minus variable costs (fixed costs are168

ignored), TP = TR− V C. We assume that the variable costs are a proportion of the toll revenue (the169

proportionality factor is denoted by α < 1). Thus, the social welfare is given by:170

SW = CS + TP

= CS + (TR− V C)

=

V∑
v=1

Uv

|βv
c |

+

[
(1− α)×

V∑
v=1

cv

] (7)

171

The absolute value of βv
c is used to translate CS into dollar equivalents. The distance-based toll opti-172

mization problem is formulated as a simulation-based optimization problem in Equation 8, where the173

objective is social welfare, the decision variables are the vector of tolling function parameters for the174

current optimization horizon, and the constraints are toll bounds and the DTA model system.175
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176

max
θ

[
V∑

v=1

Uv

|βv
c |

+ (1− α)×
V∑

v=1

cv

]

s.t.

G(xp, γp, ttg,θ) = tt

τLB ≤ ϕl(θ
h
l , D

v
l ) ≤ τUB, ∀v = 1, 2, ..., V ; l = 1, 2..., L;h = 1, 2, ...,H

(8)

The upper and lower bounds τLB, τLB are imposed to allow for tolling function values within a safe177

and acceptable range, suitable for real-life implementations.178

3.4. Solution Algorithm179

Due to the highly non-convex nature of the objective function in 8, we apply a real-coded Genetic180

Algorithm (GA) to solve the optimization problem in 8. More details on the GA algorithm may be181

found in Lentzakis et al. (2020). Computational performance is enhanced by utilizing parallelization182

wherein the evaluations of different candidate solutions within an iteration of the GA are performed in183

parallel.184

4. Tolling Zone Design through Unsupervised Learning185

For most tolling-related implementation decisions, at least in the USA, tolling zone boundaries are186

subject to extreme political scrutiny, Environmental Justice reviews, exemptions for residents of certain187

areas, etc. Unsupervised machine learning utilizes historical data to reveal patterns, similarities or hid-188

den structure and can contribute to changing the current state-of-affairs, with regards to tolling zone189

design. In this paper, we posit that it would be beneficial for a city or highway operator to rely on un-190

supervised learning approach in any sort of real-world setting, for expeditious implementation. Even in191

the case that stakeholder involvement is mandatory, tolling zone derivation through unsupervised learn-192

ing can significantly augment the decision-making process. Unsupervised learning can be approached193

through different techniques such as clustering, association rules, and dimensionality reduction. Our194
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focus will be on clustering. One of the inputs with significant impact on our distance-based tolling sys-195

tem performance is the tolling zone derivation. This input specifies which links belong to each tolling196

zone and the number of zones. Each tolling function ϕl(θ
h
l , D

v
l ) corresponds to one tolling zone. Past197

literature for partitioning urban traffic networks used datasets based on speed, flow, density (Gu and198

Saberi (2019a); Ji and Geroliminis (2012); Lentzakis et al. (2014); Saeedmanesh and Geroliminis (2017))199

and, more recently, marginal cost toll data (Lentzakis et al., 2020). In our case, the travel speed index200

(TSI) is used, a widely used quantitative indicator that employs link speed normalization (Li and Xiao,201

2020), given the fact that identical link speed levels might reflect different traffic conditions. Speed202

information for toll setting is currently used in a similar fashion as in Singapore’s ERP system, (Lehe,203

2019). It should be noted that the decision to use travel speed indices, rather than marginal cost tolls204

(MCT) used in Lentzakis et al. (2020), has to do with the fact that, in this work, one of our main goals205

was to reduce computational effort, both during data preprocessing and the predictive distance-based206

toll optimization framework implementation, placing real-world applicability at the forefront. Should207

circumstances allow it, the possibility of using MCT as a feature should definitely be explored.208

4.1. Clustering Approaches209

Elhamifar and Vidal (2009), inspired by compressed sensing (Lee et al., 2007), introduced Sparse210

Subspace Clustering (SSC), which makes use of the self-expressiveness property to construct the affin-211

ity matrix (which quantifies the extent of pairwise similarity between a set of data points). Self-212

expressiveness (Elhamifar and Vidal, 2013) describes the fact that a data point found in a union of213

subspaces can be represented as the linear combination of other data points. Based on the com-214

puted affinity matrix, spectral clustering is applied to derive the underlying subspaces. While subspace215

clustering methods have been used extensively for, among others, temporal video segmentation and216

switched system identification (Bako, 2011; Rao et al., 2009), only recently, has this technique come to217

the attention of the transportation research community. Zhang et al. (2019) employed SSC to classify218

spatiotemporal taxi patterns with regards to their passenger searching behavior. For our experiments219

we selected to compare two Sparse Subspace Clustering variants, SSCEL and SSCOMP, employing220
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Elastic Net optimization (You et al., 2016a) and Orthogonal Matching Pursuit (You et al., 2016b)221

respectively, against two well-known hierarchical density-based clustering methods, OPTICS (Ankerst222

et al., 1999), (Ordering Points To Identify the Clustering Structure), and HDBSCAN* (Campello et al.,223

2013), (Hierarchical Density-Based Spatial Clustering of Applications with Noise).224

4.1.1. Sparse Subspace Clustering Methods225

For the Sparse Subspace Clustering application, we selected two variants,SSCEL and SSCOMP. We226

exploited the property of self-representation to learn the affinity matrix, to be subsequently used in227

our implementation of spectral clustering. As noted previously, data self-expressiveness (Elhamifar and228

Vidal, 2013) describes the fact that a data point found in a union of subspaces can be represented as229

the linear combination of other data points, expressed through the following optimization problem:230

min
C

∥C∥1

s.t.

X = XC

diag(C) = 0

(9)

231

Where X ∈ RD×N is the data point matrix and C ∈ RN×N is the self-expression coefficient matrix.232

In practice, however, solving N such problems over N variables may be computationally expensive for233

large N . Instead, the optimization problem is expressed as follows:234

min
cj

∥xj −Xcj∥22

s.t.

∥cj∥0 ≤ k

diag(C) = 0

(10)

We can now efficiently solve the above problem using the Orthogonal Matching Pursuit algorithm, as235

described in You et al. (2016b). Orthogonal Matching Pursuit selects a single column of X each time,236
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xj , such that the absolute value of the dot product with the residual cj is maximized and the coefficients237

are computed until k columns are selected. Subsequently, we learn the affinity matrix W through data238

self-representation as: W = |C| +
∣∣CT

∣∣. Alternatively, we may employ Elastic Net regularization239

for scalable subspace clustering. Following You et al. (2016a), we used an active set algorithm that240

efficiently solves the elastic net regularization subproblem, which follows below, by capitalizing on the241

geometric structure of the elastic net solution:242

min
cj

λ∥cj∥1 +
1− λ

2
∥cj∥22 +

γ

2
∥xj −Xcj∥22 (11)

Where λ ∈ ( 0, 1] and γ > 0. In the majority of solution approaches for the Subspace Clustering243

problem, after learning the affinity matrix, spectral clustering is applied to the resulting matrix to244

derive the final clustering.245

4.1.2. Hierarchical Density-based Clustering Methods246

Hierarchical density-based clustering methods are gaining traction among the research community,247

exhibiting robustness during parameter selection and being able to cope with clusters characterized248

by large inter-cluster density variability, unlike their non-hierarchical predecessor, DBSCAN (Schubert249

et al., 2017).250

OPTICS utilizes hyperparameters ϵ and κ, representing the maximum ball radius with each data point at251

its center and the minimum density threshold, respectively. Assuming a metric space (X, d) comprising252

of a set of data points X = {x1, x2, ..., xn}, a data point x is considered to be a core point with respect253

to ϵ and κ if its ϵ-neighborhood Nϵ(x) contains a minimum of κ data points. Two core points xi, xj254

are ϵ-reachable with respect to ϵ and κ if they are both contained within each others ϵ-neighborhood.255

Two core points xi, xj are density-connected with respect to ϵ and κ if they are directly or transitively256

ϵ-reachable. A cluster is the largest possible group of data points, where each two points are considered257

connected in terms of density. In OPTICS data points are assigned a core distance dϵ,κcore(x) to the κ-th258

nearest neighbor, for varying degrees of density. The reachability-distance dϵ,κreach(xi, xj) is the maximum259

between the core distance of xi and the distance between data points xi,xj . A single global ϵ′ value is260
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used to extract a flat clustering.261

HDBSCAN* is similar to OPTICS with parameter ϵ = ∞ and a different technique, based on cluster262

stability, is utilized for flat clustering. In the case of HDBSCAN*, we have dκcore(xi) representing the263

κ-th nearest neighbor distance. For a fixed κ and a range of possible ϵ values, the mutual reachability264

distance dκmreach(xi, xj) is used to generate a complete hierarchy of clusterings. Thus, for any fixed ϵ265

value, the clustering produced by DBSCAN at a given level in the hierarchy is the clustering obtained266

for the corresponding ϵ value.267

The selected hierarchical density-based clustering methods result in clusterings where some data268

points are considered noise. A feasible derivation of tolling zones, however, must involve the assignment269

of all data points to clusters. In order to address this issue, we perform a secondary assignment where270

all noise data points are assigned to the closest clusters (using Euclidean distance).271

4.2. Clustering Performance Metrics272

As clustering performance metrics, the Silhouette Coefficient (SC) (Rousseeuw, 1987) and the273

Davies-Bouldin index (DB) (Davies and Bouldin, 1979) were selected. SC is the average for the entire274

dataset of the silhouette, which measures cohesion and separation for each cluster and ranges from275

[−1, 1], where -1 represents an inappropriate clustering (within-cluster variability is large and between276

cluster variability is small), 0 represents overlapping clusters and 1 represents highly dense clustering.277

DB is a function of the ratio of intra-cluster scatter to inter-cluster separation. DB values closer to 0278

indicate a better clustering result.279

4.3. Clustering Results280

It would be preferable that the selected clustering methods produce clustering results that are of281

high quality, according to our previously presented internal evaluation indices, but also do not preclude282

any sort of practical application, due to high computational cost, incurred on the distance-based toll283

optimization framework. This translates into a static tolling zone derivation (non-varying during the284

simulation), with a reasonably low number of tolling zones. For our dataset, besides spatial coordinates,285
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we decided to use the travel speed index (TSI) for each link as an additional feature, calculated as follows:286

TSIi = 1− νi

νfi
(12)

Where νi, ν
f
i the link speed and free flow speed for link i respectively. Simulated speed data at the287

segment and link level, obtained from a calibrated DynaMIT2.0 model of the Boston CBD (Lu et al.,288

2015a), were used to derive the tolling zone derivations. In the case of static partitioning schemes289

derived offline, a preferable alternative to using the average of TSI across specific intervals, as is the290

case for our hierarchical density-based clustering approaches, would be to use the TSI values for all time291

intervals, i.e., the entirety of our dataset, since self-representation, an integral part of sparse subspace292

clustering, is amenable for use of datasets with spatiotemporal attributes (Hashemi and Vikalo, 2018;293

Pham et al., 2012). The Boston CBD network, shown in Figure 4, has 846 nodes, 1746 links, 3085294

segments, 5057 lanes and 13080 Origin-Destination pairs.295
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Figure 4: Boston CBD Network
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(a) 2 zones derived using SCCEL for feature TSI, with SC=0.114, DB=3.925

(b) 2 zones derived using SSCOMP for feature TSI, with SC=0.198, DB=1.276

Figure 5: Clustering results and tolling zones (Sparse Subspace Clustering)
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(a) 5 zones derived using OPTICS for feature TSI, with SC=0.387, DB=0.858

(b) 5 zones derived using HDBSCAN* for feature TSI, with SC=0.400, DB=0.776

Figure 6: Clustering results and Tolling zones (Hierarchical Density-based Clustering)
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5. Experiments: Boston CBD Network296

5.1. Experimental Design297

In order to investigate the impact tolling zone derivations –which are derived from unsupervised298

learning methods– have on the performance of adaptive distance-based congestion pricing schemes,299

when applied on an urban network, experiments are conducted on the Boston CBD network illustrated300

in Figure 4. A linear tolling function is considered with lower and upper bounds on the toll charged301

in each zone (i.e ϕl(θ
t
l , Dl) = θtl1 + θtl2Dl; and 0 ≤ ϕl(θ

t
l , Dl) ≤ 1.5). The simulation period is from302

06:00-09:00 covering the morning peak. As noted earlier, historical demand and supply parameters303

are obtained from prior offline calibrations of DynaMIT2.0 for the Boston Central Business District304

network (Azevedo et al., 2018). The estimation interval is 5 minutes and the prediction horizon is 30305

minutes. The Boston network we consider contains 846 nodes, 1746 links, 3085 segments, 5057 lanes306

and 13080 origin-destination pairs.307

The performance measures are calculated for the population of vehicles with habitual departure308

time within 06:00-09:00 (these drivers may later change the departure time in response to the traffic309

conditions). A warm-up period of 15 min is used and the last 15 min of the simulation is a cool-310

down period without toll optimization to ensure that all the vehicles with habitual departure time in311

06:00-09:00 finish their trips.312

The mean and standard deviation of the value of time are S$23.5 and S$5.75 respectively. The cost313

coefficient for each vehicle is calculated from the lognormally distributed sampled value of time. The314

parameters of the pre-trip choice model are summarized in Table 2.315

A total of six scenarios are considered, which are summarized in Table 3. All scenarios involve316

dynamic tolls computed using the framework described in Section 2, with the exception of the base317

scenario (B0) which is the No Toll case. Recall that the state estimation interval is 5 minutes implying318

that in the case of distance-based pricing schemes the tolling function parameters vary every 5 minutes.319

The simulations were run using Ubuntu Linux on an HPC Cluster, with 5x60 cores and 5x250GB RAM.320

The base scenario B0 was calibrated to replicate prevailing traffic conditions in the Boston CBD321
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Table 2: Pre-trip Behavioral Model - Parameters

Parameter Value

βCM -0.5

βCT -12

βCDT1 -0.12

βCDT2 -0.79

βCDT3 -1.15

βCDT4 - 1.65

βv
t -0.008

βE -0.004

βL -0.016

(refer to Azevedo et al. (2018) for more details). However, given the fact that a No Toll base scenario322

may not provide specific information regarding what portion of the performance uplift stems from these323

novel distance-based tolling schemes, rather than the inherent effects of using tolling to internalize the324

congestion externality, we are also considering a comparison scenario B1, (termed UNIREG-TSI),325

which employs predictive distance-based tolling on the the Boston CBD network as a unitary region.326

Scenarios B2, B3, B4, B5 employ predictive distance-based tolling and differ only in the derivation327

of the tolling zones. In scenario B2 (termed SSCEL-TSI), tolling zones are defined based on TSI328

data using SSCEL. In scenario B3 (termed SSCOMP-TSI), tolling zones are defined based on TSI329

data using SSCOMP. In scenario B4 (termed OPTICS-TSI), tolling zones are defined based on TSI330

data using OPTICS, and finally, in scenario B5 (termed HDBSCAN*-TSI) they are based on TSI331

data using HDBSCAN*. Scenarios B0-B5 are evaluated on three performance measures, total social332

welfare (SW), consumer surplus (CS) and average travel time (TT) to capture overall societal benefits,333

together with the impact on individual travelers.334
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Table 3: Simulation scenarios

Scenario Tolling Scheme Description

B0 No Toll No tolling scheme in place

B1 Predictive distance-based Tolling zone encompassing entire network: UNIREG-TSI

B2 Predictive distance-based Tolling zones derived from: SSCEL-TSI

B3 Predictive distance-based Tolling zones derived from: SSCOMP-TSI

B4 Predictive distance-based Tolling zones derived from: OPTICS-TSI

B5 Predictive distance-based Tolling zones derived from: HDBSCAN*-TSI

5.2. Results335

The performance measures for all simulation scenarios are summarized in Table 4, the differences336

in SW and CS (in $ amounts) of scenarios B1-B5 relative to the base scenario B0 are presented in337

Figure 7a, and the relative performance in terms of average travel time (% improvement) over the base338

scenario B0 is illustrated in Figure 7b. From Table 4, B1-B5 exhibit an increase between $182623.5339

- $206866.5 and $64814.9 - $127062.4, for SW and CS respectively, relative to B0. The average SW340

gain per traveller, relative to the No Toll case is found to be around $1.69 for those acquired via sparse341

subspace clustering and around $2.15 for tolling zone derivations acquired via hierarchical density-based342

clustering.343

Observe that all the scenarios yield a positive consumer surplus indicating that net user benefits344

are positive even prior to any use of the toll revenues. This is a surprising finding and in contrast with345

several past studies that have estimated negative user benefits (for example Eliasson and Mattsson346

(2006) and De Palma et al. (2005)). We conjecture that this is a result of several factors. First, as347

noted by Van Den Berg and Verhoef (2011)), in the case when there is heterogeneity in the value of time348

(and values of schedule delay), the net user benefits may depend in large part on the extent and nature349

of heterogeneity. In experiments on a variant of the standard bottleneck model including departure350

time choice and a transit alternative (with heterogeneity in value of time, schedule delay, early and351
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late), Chen (2022) find that when the coefficient of variation in the value of time exceeds around 0.5,352

the net user benefits start to become positive (even before accounting for distribution of toll revenues).353

Second, our system integrates the provision of consistent guidance information with the optimization354

of tolls. These two factors coupled with the high levels of initial congestion may be the reason why we355

observe positive net user benefits even prior to a redistribution of toll revenues. Similar tests across356

different network topologies and spatio-temporal congestion patterns are required to determine whether357

this finding is a peculiarity of our context and network. The significant variation of differences in both358

welfare and CS across the five schemes confirms that the performance of distance-based tolling schemes359

is appreciably affected by the definition of the tolling zones. First, observe that the two sparse subspace360

clustering approaches yield quite different clusters and varying outcomes in terms of both CS and361

welfare. Scenario B2 (SCCEL) yields the second lowest overall welfare, which is only marginally higher362

than scenario B1 where the entire network is treated as a single zone. The reason for the relatively poor363

performance is two-fold. First, as is apparent in Figure 5a, SCCEL results in clusters that lack spatial364

compactness. In other words, zones are ’non-contiguous’ and links in different parts of the network365

belong to the same zone (links belonging to the red cluster or zone in particular). This clearly poses an366

issue in the toll optimization, since the toll design includes a two-part tariff where the fixed component367

is charged during each entry into a new zone (in other words each time a zone boundary is traversed).368

Overall, it results in the fixed part of the tariff being optimized at a much lower level than in the case369

when the zones are spatially compact (SSCOMP in Scenario B3 and Scenarios B4, B5). Interestingly,370

the low tolls charged result in a high consumer surplus, comparable with the best performing scenario371

since the travel time gains and reductions in schedule delay costs are still significant.372

The second reason for the poor performance of SCCEL in Scenario B2 may be attributed to the373

clusters themselves. Observe that the key difference in the clusters or zones between Scenario B2 and374

Scenario B3 (which yields a significantly larger welfare) is that Scenario B3 clearly demarcates the375

Back Bay region from the rest of Boston (Figure 4) whereas this is not the case in Scenario B2. The376

Back Bay region contains the Prudential center, which is a major attractor of trips in the morning peak377

and hence, arguably, the zone definitions in Scenario B3 are more meaningful. This is also evident from378
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the clustering performance metrics which clearly indicate that the clusters are more homogeneous in379

the case of Scenario B3 than B2 (SC of 0.198 versus 0.114).380

Turning to the hierarchical density-based clustering approaches, we observe that both OPTICS381

(Scenario B4) and HDBSCAN* (Scenario B5) yield meaningful clusters/zone definitions. Both dis-382

tinguish the densely residential South Boston region (red cluster in Figure 6a and orange cluster in383

Figure 6b; see also Figure 4) from the commercial South Boston Waterfront (pink cluster in Figure 6a384

and blue cluster in Figure 6b). In Scenario B4, the commercial downtown region (dark green cluster385

in Figure 6a) is separated from the more residential North End and West End regions (light green386

cluster in Figure 6a). These three regions are all combined into a single zone in Scenario B5 (green387

cluster in Figure 6b). The most notable difference in the clusters between B4 and B5 and one that388

most likely leads to the significant performance difference is that Scenario B5 clearly demarcates the389

Back Bay region from the residential South End region (red and purple clusters in Figure 6b) unlike390

Scenario B4. As discussed earlier, this appears to be the reason for Scenario B5 yielding the largest391

gains in social welfare and consumer surplus. Scenario B5 also yields the clusters with links that are392

internally homogeneous (SC of 0.4). Note that when using speed for clustering as we have done, the393

more homogeneity within the clusters in an of itself does not appear to guarantee superior performance394

in terms of welfare. This is evident when comparing Scenarios B3 and B4; B4 yields superior metrics395

in terms of clustering performance but yields lower overall welfare. This underscores the importance396

of checking the reasonableness of the clusters themselves using context specific knowledge of demand397

patterns, land-use etc.398

Notably, the TT performance improvement illustrated in Figure 7b, relative to the base case B0 is399

substantial in all schemes. It would appear that the Boston CBD area would benefit from an application400

of a predictive distance-based tolling scheme, with average travel time TT improvements of up to 52%401

(relative to B0). However, we do caution that the large travel time improvements may also be, in part,402

due to a large number of short ’crossing’ trips that are an artifact of modeling only the CBD area.403

While it should be stated that while all the predictive distance-based tolling schemes yield substantial404

network performance benefits when compared to the No Toll scenario, scenario B5 with HDBSCAN*-405
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based tolling zone derivation yields the largest welfare gains. The observed welfare increase comes from406

the reduction in schedule delay costs and low travel times, which may be attributed to the efficient407

internalization of travel externality-associated costs through distance-based tolling. This in fact applies408

to all distance-based schemes considered in the experiments.409

Scenario B3 with only 2 tolling zones derived from SSCOMP resulted in comparable levels of410

performance to the Scenario B5, and in cases where computational effort poses a significant hurdle411

for practical implementation, it would be preferable to use SSCOMP. Although the HDBSCAN*-based412

tolling zone derivation leads to the best results, it is also more computationally intensive, due to the413

large number of tolling function parameters that require optimization. The overall computational time414

for scenarios B1-B3 were around 4 hours. Given we are simulating the 6-9 AM peak period, this does not415

yet achieve real-time performance for a 5-minute horizon. However, this could be attained by increasing416

the parallelization or marginally reducing the number of GA generations during the optimization. In417

case of scenarios B4, B5 where the number of zones are larger, the run times were significantly higher418

at 12 hours. In this case, to achieve real-time performance we would need to switch to a 15-minute roll419

period. For more details on computational considerations we refer the reader to Gupta et al. (2020).420

Table 4: Performance measures

Scenarios

Metrics B1 B2 B3 B4 B5

SW ($) 181792.0 182623.5 205345.1 194744.3 206866.5

CS ($) 64814.9 126194.4 110504.2 84083.7 127062.4

TT (s) 168.0 172.2 152.3 156.3 147.9

In Figure 8a, the Empirical Cumulative Distribution Function (ECDF) of the total toll charge421

(for the population of vehicles) for scenarios B1, B2, B3, B4, B5 is presented. It is evident that422

the majority of the traveler population (almost 90%) pay total tolls no higher than $3 for any of the423

distance-based pricing schemes. Further, the overall magnitude of toll charges in the case of scenario424
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(a) Difference in SW, CS for scenarios

B1, B2, B3, B4, B5 relative to B0

(b) Percentage Improvement in TT for scenarios

B1, B2, B3, B4, B5 relative to B0

Figure 7: Performance results for scenarios B1, B2, B3, B4, B5 relative to B0

B4 is consistently higher than that of scenarios B3, B5, which happen to be the best performing425

scenarios. On the other hand, the overall magnitude of toll charges in scenario B2 is consistently lower426

than that of scenarios B3, B5, which could be explained by the fact that the corresponding tolling zone427

derivation suffers in terms of spatial compactness, thus leading to lower tolling efficiency. For scenario428

B1, where the entire BCBD network is treated as a single tolling zone, we can observe that more than429

60% of the population is charged the toll upper bound (1.5$), which leads to inequitable charging, but430

also higher revenue. The reason for this lies in the fact that, unlike the case of scenarios B2-B5, there431

is only one zone for the vehicles to traverse.432

As is evident from Figure 8b, demonstrating the ECDF of travel time improvement per OD-pair, for433

less than 10% of the traveler population, travel times are equal or lower for scenario B0, as compared434

to scenarios B1-B5. Up to 90% of the traveler population benefits from lower travel times, in scenarios435

B1-B5 employing distance-based tolling methods, compared to base scenario B0. It is also evident that436

the largest proportion of the traveler population subset that benefits from lower travel times corresponds437

to B2, though followed very closely by B1.438
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(a) ECDF of total Toll Charge values for scenarios

B1, B2, B3, B4, B5

(b) ECDF of TT improvement per OD-pair over B0

for scenarios B1, B2, B3, B4, B5

Figure 8: Empirical Cumulative Distribution Functions for scenarios B1, B2, B3, B4, B5 relative to B0

5.3. Iterating between toll zone definition and toll optimization439

Recall that the motivation behind using unsupervised learning for the toll zone definition is to440

decouple the problems of toll definition and toll value optimization. This avoids having to solve a441

complex mixed-integer programming problem for the design of the distance-based scheme. Second,442

and more importantly, the decoupling of the two problems also serves to provide a useful separation443

between what is performed offline and what is performed online. Specifically, the proposed framework444

involves setting the tolling zones offline and then optimizing the toll values in real-time every five or445

fifteen minutes (within for example, a traffic management system). In this context, it may be desirable446

to re-evaluate the zone definitions periodically, say every month or every quarter (as is done in the447

current ERP system in Singapore for the setting of the toll rates). In this setting, a loop from the toll448

optimization and the toll design would be beneficial.449

In order to do so, we redo the clustering exercise in two ways. First, we compute an implied per-450

distance toll rate for each link and time interval from the optimized tolling function parameters obtained451

via the predictive distance-based toll optimization framework. We then use the resulting toll values452

from each scenario as a feature and perform the clustering once again with SSCEL,SSCOMP,OPTICS453

and HDBSCAN*, respectively. Note that clearly, since tolling function parameters are identical for454
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all links in the same zone by construction, this can only yield an aggregation of the original zone455

definitions. Nevertheless, it serves to examine robustness of the original zone definitions. Second,456

we redo the clustering using the travel speed indices obtained after the application of the optimized457

tolls. Interestingly, in both cases we observe that the original clustering results and metrics are quite458

robust (see Figures 9–12). However, in the case that they are not, this procedure could in principle be459

performed iteratively and the zone definitions could be updated.460
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(a) 2 zones derived using SCCEL for feature TSI, with SC=0.118, DB=3.716

(b) 2 zones derived using SSCOMP for feature TSI, with SC=0.194, DB=1.252

Figure 9: Clustering results and tolling zones (Sparse Subspace Clustering)
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(a) 5 zones derived using OPTICS for feature TSI, with SC=0.387, DB=0.858

(b) 5 zones derived using HDBSCAN* for feature TSI, with SC=0.400, DB=0.776

Figure 10: Clustering results and Tolling zones (Hierarchical Density-based Clustering)
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(a) 2 zones derived using SCCEL for feature TSI, with SC=0.039, DB=5.043

(b) 2 zones derived using SSCOMP for feature TSI, with SC=0.102, DB=4.009

Figure 11: Clustering results and tolling zones (Sparse Subspace Clustering)
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(a) 5 zones derived using OPTICS for feature TSI, with SC=0.387, DB=0.858

(b) 5 zones derived using HDBSCAN* for feature TSI, with SC=0.400, DB=0.776

Figure 12: Clustering results and Tolling zones (Hierarchical Density-based Clustering)
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6. Conclusions and Future Work461

In this paper we investigated the use of sparse subspace clustering methods to define tolling zones462

for distance-based tolling schemes, and their impact on traffic network performance using a predictive463

real-time distance-based toll optimization framework. Experiments were conducted on the real-world464

urban network of the Boston Central Business District. We determined that the best network perfor-465

mance comes from the use of distance-based tolling zones derived from HDBSCAN*, when using Travel466

Speed Index data. Performance using only 2 tolling zones acquired via the SSCOMP sparse subspace467

clustering variant was found to be comparable to that of a 5-zone, HDBSCAN*-based derivation, so, in468

cases where minimizing computational effort is one of the primary objectives, as is the goal of this work,469

it should be considered as a viable alternative. Despite the fact that all clustering approaches produced470

tolling zone derivations which, as part of our framework, contributed to significant performance gains,471

when compared to the No Toll case, we observed large differences in performance between tolling zone472

derivations acquired via the sparse subspace clustering variants. Specifically, for this particular dataset,473

the SSCEL variant of sparse subspace clustering produced low quality clustering, due to the low degree474

of spatial compactness. This warrants further investigation, however, overall, tolling zone derivations475

acquired from both types of clustering methods, yielded significant benefits on network performance476

and even outperformed a predictive distance-based tolling scheme that treated the network as a single477

zone. Finally, the results also underscore the importance of relying not solely on clustering perfor-478

mance metrics but also the reasonableness of the clusters themselves using context-specific knowledge479

of demand patterns, land-use etc.480

In future work, we aim to evaluate alternate clustering methods for systematic tolling zone derivation481

as part of the distance-based tolling optimization framework. Compared to our No Toll base case,482

social welfare and network performance results suggest that the clustering can produce distance-based483

tolling zones with considerable positive impact. We are also in the process of investigating alternative484

solution approaches, including Bayesian and Surrogate Optimization, and comparing toll optimization485

framework performance to that of our currently used solution approach.486
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